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Abstract— In this paper, we present an automated parameter
optimization method for trajectory generation. We formulate
parameter optimization as a constrained optimization problem
that can be effectively solved using Bayesian optimization.
While the approach is generic to any trajectory generation
method, we showcase it using optimization fabrics. Optimiza-
tion fabrics are a geometric trajectory generation method based
on non-Riemannian geometry. By symbolically pre-solving the
structure of the tree of fabrics, we obtain a parameterized
trajectory generator, called symbolic fabrics. We show that
autotuned symbolic fabrics reach expert-level performance in
a few trials. Additionally, we show that tuning transfers across
different robots, motion planning problems and between sim-
ulation and real world. Finally, we qualitatively showcase that
the framework could be used for coupled mobile manipulation.

Code github.com/maxspahn/optuna fabrics

I. INTRODUCTION

Mobile manipulation is the field of robotics concerned with
highly capable robots characterized by their locomotion and
manipulation ability. Such robots are getting ever more
attention as they will be deployed to human-shared envi-
ronments, like households or warehouses. In such dynamic
environments, fast trajectory generation is crucial to avoid
collisions and react quickly to changing goal definitions.

Trajectory generation is often addressed by solving an opti-
mization problem that consists of a scalar objective func-
tion – the dynamics or transition function – and several
constraints. As the degrees of freedom and number of con-
straints increase, solving that problem in real-time becomes
challenging. This is especially limiting in the case of mobile
manipulation [1]. Optimization fabrics represent a different
approach to the problem, as they formulate trajectory gener-
ation as the shortest-geodesic-problem in a manifold of the
configuration space [2].

With optimization fabrics, different components, or desired
behaviors, such as collision avoidance and joint limit avoid-
ance, are combined using Riemannian metrics. As the struc-
ture of the resulting trajectory generation methods remains
unchanged across all time steps, it can be composed before
runtime, thus saving computational costs during executing.
Optimization fabrics, but also their predecessor Rieman-
nian Motion Policies (RMPs), have shown impressive re-
sults for several manipulator applications, including dynamic
and crowded environments [3]–[5]. However, despite their
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Fig. 1: Overview of one trial in the tuning pipeline for
symbolic optimization fabrics. The objective function is eval-
uated after an entire trial run is simulated. Using Bayesian
optimization, a new parameter set is suggested based on the
history of trials. The best parameter set is extracted from all
trials.

theoretical properties of inherent collision avoidance and
convergence, these methods require expertise and intuition
to tune individual components to generate smooth and well-
behaving trajectories.

Contributions: To address this issue, we formulate optimiza-
tion fabrics as a symbolic trajectory generation method.
Precisely, the combination of the individual components
(joint limit avoidance, goal reaching, collision avoidance,
etc.) is performed in a parameterized way before runtime.
Separating composition and evaluation allows for changing
the individual parameters at runtime while achieving low
computational costs. Additionally, this allows formulating
parameter-tuning as a constrained optimization problem.
Solving this problem effectively automates the tuning pro-
cess systematically using Bayesian optimization. We show
that automated tuning requires only few trials to achieve sim-
ilar performance to an expert in the field, and systematically
outperforms a randomized parameter setting. Moreover, we
show that one parameter tuning generalizes across different
robots, to some extent, across different tasks and between
simulation and real world. Finally, we demonstrate how
coupled mobile manipulation with a differential drive can
be achieved using autotuned optimization fabrics for in-store
order-picking integrating visual servoing.

II. RELATED WORKS

A. Geometric control for trajectory generation

Operational space control was the first control method that
imposed a desired dynamical system onto a robotic system
[6], [7]. The concept was an important step toward naturally
controlling kinematically redundant robots. The concept was
formalized in the field of geometric control, where the
study of differential geometry leads to stable and converging
behavior under geometric conditions [8]. More recently,
RMPs for manipulation tasks offered a highly reactive tra-
jectory generation method [9], [10]. This method achieves
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Fig. 2: Two different parameter sets for optimization fabrics
given the same problem. While the greedy tuning is more
aggressive (purple), the more conservative tuning results in
a smoother trajectory (green).

composable behavior by introducing a split between the im-
portance metric and the forcing term. Using the pullback and
pushforward operator to change between manifolds of the
configuration space, individual components, such as collision
avoidance and goal attraction, can be designed iteratively.
However, RMPs require intuition and experience when being
designed, and convergence can only be proven conditionally
[11]. Later, optimization fabrics were introduced that are
able to completely decouple importance metrics and the
defining geometry. Under simple construction rules for these
two components, convergence can be easily guaranteed [4],
[11]–[13]. In our prior work on optimization fabrics, the
framework was first applied to mobile manipulation and
generalized to more dynamic environments. [5].

B. Autotuning for trajectory generation

Autotuning can be beneficial for trajectory generation when
using model predictive control. In [14], an autotuned model
predictive controller has outperformed a manual tuned con-
troller of the same kind by 25%. Jointly optimizing param-
eters and the model of the controller, AutoMPC showed the
benefit of parameter tuning in the context of simultaneous
system identification and control [15]. These methods are
explicitly formulated for model predictive control and do
not transfer easily to other trajectory generation methods.
In contrast, we propose a generic parameter optimization
approach to trajectory generation.

C. Hyperparameter tuning in machine learning

Within the machine-learning field, hyperparameter tuning has
shown to be highly important for all different kinds of appli-
cations [16]–[18]. Parameter optimization aims to minimize
training costs while achieving the best possible performance.
Hyperparameter tuning is most valuable in extremely costly
applications such as reinforcement learning [19]. Gener-
ally, two different search algorithms have been investigated:
grid search and random search [20]. Current state-of-the-art
methods for parameter search are based on random search
with a Bayesian optimizer [18], [21]. While the machine-
learning community has largely agreed on the importance of
parameter tuning, systematic tuning of trajectory generation
methods are not well established. In this paper, we showcase,
with the example of optimization fabrics, how important
parameter tuning is and how trajectory generation can benefit
from it.

III. OVERVIEW

In this paper, we first recall very briefly the theory of opti-
mization fabrics and the steps to use it for trajectory genera-
tion (Section IV). Then, we formulate optimization fabrics as
a symbolic trajectory generator, so that combining of individ-
ual components is only performed once (Section V). Then,
we formulate parameter tuning for trajectory generation as
a constrained optimization problem and propose Bayesian
optimization for effective autotuning (Section VI). As an
example, we apply this autotuning to symbolic optimization
fabrics (Section VII), but it is generally independent of the
trajectory generator at hand.

IV. BACKGROUND

In this section, we very briefly introduce the concepts re-
quired for trajectory generation with optimization fabrics. For
a more in-depth introduction to optimization fabrics and its
foundations in differential geometry, the reader is referred to
[3], [5], [11].

A. Configurations and task variables

We denote q ∈ Q ⊂ Rn a configuration of the robot with
n its degrees of freedom; Q is the configuration space of
the generalized coordinates of the system. Generally, q(t)
defines the robot’s configuration at time t, so that q̇, q̈ define
the instantaneous derivatives of the robot’s configuration.
Similarly, we assume that there is a set of task variables
xj ∈ Xj ⊂ Rmj with variable dimension mj ≤ n. The task
space Xj defines an arbitrary manifold of the configuration
space Q in which a robotic task can be represented. Further,
we assume that there is a differential map φj : Rn → Rmj

that relates the configuration space to the jth task space.
For example, when a task variable is defined as the end-
effector position, then φj is the positional part of the forward
kinematics. On the other hand, if a task variable is defined
to be the joint position, then φj is the identity function. In
the following, we drop the subscript j in most cases for
readability when the context is clear.

We assume that φ is in C1 so that the Jacobian is defined as

Jφ =
∂φ

∂q
∈ Rm×n, (1)

or Jφ = ∂qφ for short. Thus, we can write the total time
derivatives of x as ẋ = Jφq̇ and ẍ = Jφq̈ + J̇φq̇.

B. Spectral semi-sprays

Inspired by simple mechanics (e.g., the simple pendulum),
the framework of optimization fabrics designs motion poli-
cies as second-order dynamical systems ẍ = π(x, ẋ) [11],
[22]. The motion policy is defined by the differential equation
Mẍ + f = 0, where M(x, ẋ) and f(x, ẋ) are functions
of position and velocity. Besides, M is symmetric and
invertible. We denote such systems as S = (M ,f)X and
refer to them as spectral semi-sprays, or specs for short.
When the space of the task variable is clear from the context,
we drop the subscript.



C. Operations on specs

Complex trajectory generation is composed of multiple com-
ponents, such as collision avoidance, joint limits avoidance,
etc. The power of optimization fabrics lies in the metric-
weighted sum to combine multiple components from differ-
ent manifolds. These operations are derived from operations
on specs and are briefly recalled here.

Given a differential map φ : Q → X and a spec (M ,f)X ,
the pullback is defined as

pullφ(M ,f)X =
(
JTφMJφ,J

T
φ (f + J̇φq̇)

)
Q
. (2)

The pullback allows converting between two distinct mani-
folds (e.g. a spec could be defined in the robot’s workspace
and pulled into the robot’s configuration space using the
pullback with φ being the forward kinematics).

For two specs, S1 = (M1,f1)X and S2 = (M2,f2)X , their
summation is defined by:

S1 + S2 = (M1 +M2,f1 + f2)X . (3)

Additionally, a spec can be energized by a Lagrangian
energy. Effectively, this equips the spec with a metric.
Specifically, given a spec of form Sh = (I,h) and an
energy Lagrangian Le with the derived equations of motion
MLe

ẍ+ fLe
= 0, we can define the operation

SLe

h = energizeLe
{Sh}

= (MLe
,fLe

+ PLe
[MLe

h− fLe
]),

(4)

where PLe = MLe

(
M−1
Le
− ẋẋT

ẋTMLe ẋ

)
is an orthogonal

projector. The resulting spec is an energized spec and we
call the operation energization.

With spectral semi-sprays and the presented operations,
avoidance behavior, such as joint limit avoidance, collision
avoidance or self-collision avoidance, can be realized.

D. Optimization fabrics

In the previous subsection, we explained how different avoid-
ance behaviors can be combined. Spectral semi-sprays can
additionally be forced by a potential, denoted as the forced
variant of form Sψ = (M ,f + ∂xψ). This forcing term
clearly changes the behavior of the system. Optimization
fabrics introduce construction rules to make sure that the
solution path x(t) of Sψ converges towards the minimum
of ψ(x). Then, the potential is designed in such a way that
its minimum represents a goal state of the motion planning
problem.

First, the initial spec that represents an avoidance component
is written in the form ẍ + h(x, ẋ) = 0, such that h is ho-
mogeneous of degree 2: h(x, αẋ) = α2h(x, ẋ) (Creation).
Secondly, the geometry is energized (Eq. (4)) with a Finsler
structure [11, Definition 5.4] (Energization). The property
of homogeneity of degree 2 and the energization with the
Finsler structure guarantees, according to [11, Theorem
4.29], that the energized spec forms a frictionless fabric. A
frictionless fabric is defined to optimize the forcing poten-
tial ψ when being damped by a positive definite damping

term [11, Definition 4.4]. Thirdly, all avoidance components
are combined in the configuration space of the robot using
the pullback and summation operation (Combination). Note,
that both operations are closed under the algebra designed
by these operations, i.e. every pulled optimization fabric or
the sum of two optimization fabrics is, itself, an optimization
fabric. In the last step, the combined spec is forced by the
potential ψ with the desired minimum and damped with
a positive definite damping term (Forcing). This resulting
system of form Mq̈+f(q, q̇)+ ∂qψ+βq̇ = 0 is solved to
obtain the trajectory generation policy in acceleration form
q̈ = π(q, q̇).

V. SYMBOLIC FABRICS

A trajectory generator that is based on optimization fab-
rics is composed of several components, such as collision
avoidance, joint limit avoidance, goal attraction, etc. Each
component contributes to the resulting optimization fabric
through the metric-weighted summation that creates the
tree of fabrics. The trajectory generator is parameterized
by the individual terms of the components. Here, we lay
out the parameterization for collision avoidance, joint limit
avoidance, self-collision avoidance, and speed-control. In our
framework, the tree of fabrics is generated before runtime
as a symbolic expression, to which the parameters are set
at runtime. Note that the approach of symbolic pre-solving
results in much higher planning frequencies. In the follow-
ing, we explain the individual parameters that we exposed
symbolically. The form of the individual terms is adapted
from [3], [4], [11] but written in a symbolic form.
a) Basic inertia: The final tree of fabrics is equipped with
a basic inertia metric that indicates how reactive the entire
motion is. This basic inertia metric is derived from the
symbolic Finsler structure: Le = 0.5mbaseq̇

T Iq̇.
b) Collision avoidance: For collision avoidance, the task
manifold X is defined by the distance function between an
obstacle and a robot link. The differential map used is defined
as

φi(q) =
‖fki(q)− xobst‖

robst + ri
− 1,

where fki(q) is the positional forward kinematics for link i
in a configuration q, robst and ri are the radii of the englobing
spheres for the obstacle and the link respectively. While this
mapping between configuration space and task manifold is
different for each obstacle and each collision link of the
robot, the geometry and metric are the same for all of them.
For the geometry ẍ+h(x, ẋ) = 0, we use the parameterized
forcing term

h(x, ẋ) =
−kgeo,col

xβgeo,col
ẋ2, (5)

where kgeo,col and βgeo,col are parameters of the trajectory
generator. Generally, we use k and β for proportional pa-
rameters and exponential parameters. The Finsler structure
for collision avoidance is parameterized as

Le(x, ẋ) =
kfin,col

xβfin,col
(−0.5(sgn(ẋ)− 1)) ẋ2, (6)



where sgn(ẋ) is the signum-operator returning the sign of
ẋ.
c) Self-collision avoidance: For self-collision avoidance, the
task manifold X is defined similarly to collision avoidance:

φi,j =
‖fki(q)− fkj(q)‖

ri + rj
− 1,

where fki(q) and fkj(q) are the positional forward kinemat-
ics of the two links for a self-collision pair and ri and rj
are the radii for both englobing spheres. The geometries are
defined analogously

h(x, ẋ) =
−kgeo,self

xβgeo,self
ẋ2. (7)

The Finsler structure for collision avoidance is parameterized
as

Le(x, ẋ) =
kfin,self

xβfin,self
(−0.5(sgn(ẋ)− 1)) ẋ2. (8)

d) Joint limit avoidance: For joint-limit avoidance, two
simple differential maps denoting the distance to the joint
limits are used, specifically

φlimit,i,lower(q) = qi − qmin,i,∀i ∈ (1, . . . , n)

φlimit,i,upper(q) = qmax,i − qi,∀i ∈ (1, . . . , n).

Similar to collision avoidance, we use the parameterized
forcing term

h(x, ẋ) =
−kgeo,limit

xβgeo,limit
ẋ2 (9)

and the Finsler structure

Le(x, ẋ) =
kfin,limit

xβfin,limit
(−0.5(sgn(ẋ)− 1)) ẋ2. (10)

e) Speed control: As the root of the tree of fabrics is a
frictionless fabric, it only converges if damped [11]. Constant
damping is sufficient to achieve the theoretical properties that
are needed for trajectory generation. However, [3], [11], [23]
proposed enhanced damping under the name of speedcontrol.
We employ the same damping strategy while adding param-
eterization. The technique is based on a dynamic damping
modification based on the distance to the goal. Specifically,
the final optimization fabric is damped according to

q̈ = −h2 −M−1∂qψ + αexq̇ − βq̇,
where h2 is the sum of all pulled forcing terms, M is the
sum of all metrics of the individual geometries, ∂qψ is the
goal attraction term pulled in the configuration space, αex is
a weighted sum of α0

ex that maintains constant execution en-
ergy without goal attraction and αψex that maintains constant
execution energy with goal attraction:

αex = sη(Lex)α0
ex + (1− sη(Lex))αψex.

Then, β is the damping term, computed as:
β = sβ(q)Bmax +Bmin +max(0, αex − αLe

),

where Bmax and Bmin are the upper and lower damping
values and αLe

is the energization coefficient maintaining
constant system energy (not execution energy) without goal
attraction. The switching functions sβ(q), sη(q) are further
parameterized as

sβ(q) = 0.5(tanh−αβ(‖q‖ − rshift)) + 1

sη(Lex) = 0.5(tanh (−0.5Lex(1− vex)− 0.5) + 1),

where rshift determines the distance to the goal at which the
switch between Bmin and Bmax occurs, αβ is the steepness
of that switching, Lex is the user-defined execution energy
(usually a simple kinetic energy in joint space) and vex is
the execution energy factor, i.e. it determines the desired
speed of motion. For a detailed discussion on speed control
with optimization fabrics, we refer to previous works on
optimization fabrics [3], [11].

We group all parameters resulting from the symbolic fabrics
defined here into a vector of parameters Θ. All parameters
are listed in Table I.

VI. PARAMETER TUNING AS AN OPTIMIZATION PROBLEM

We define parameter tuning as a constrained optimization
problem:

Θ∗ = argmin
Θ

c(Θ), s.t Θmin < Θ < Θmax, (11)

where Θmax and Θmin are the upper and lower bounds of
the parameters. The objective c(Θ) is a function of the
parameters specifying the tree of fabrics and can be evaluated
after one trajectory planning problem has finished. We call
the evaluation of one parameter set a trial. Next, we propose
an objective function that is flexible as different scenarios
may require different parameter tuning.

A. Objective

The objective function c(Θ) is a weighted sum of several
metrics, that are invariant to the robot:
c(Θ) = wdistancecdistance +wpathcpath +wclearancecclearance. (12)

cdistance accounts for the normalized, summed distance to the
goal over one trial and is defined as

cdistance =

∑T
i=0 ‖xi − xgoal‖
‖x0 − xgoal‖

, (13)

where i ∈ [0, T ] are the discretized time steps and xgoal is
the goal of the motion planning problem. cpath accounts for
the normalized path length over one trial and is defined as

cpath =

∑T
i=1 ‖xi − xi−1‖
‖x0 − xgoal‖

. (14)

cclearance accounts for the average clearance to obstacles over
one trial and is defined as

cclearance =
1

T

T∑
i=1

min
oj

∥∥∥xi − oji )∥∥∥ , (15)

where oji is the position of obstacle j at time step i. Each of
these terms is evaluated after an entire trial that was obtained
by a specific set of parameters.

B. Bayesian optimization

In the tuning phase, the problem specification for the in-
vestigated scenario, e.g., the goal and obstacle positions,
across all trials during tuning remains the same while Θ
are optimized according to the objective. To solve the
Bayesian optimization we employ the Tree-structured Parzen
Estimator as it has shown improved performance over grid-
search and conventional random search in machine learning
applications [21], [24]. To deploy this technique we used



Algorithm 1: Autotuning for trajectory generators

1 Formulate trajectory generator with parameters Θ
2 Define parameter space by Θmin,Θmax
3 Formulate objective c(Θ)
4 Initialize objective function estimate c̃(Θ)
5 for i = 0 to N do
6 Suggest parameter Θi based on c̃(Θ)
7 for t = 0 to T do
8 Compute action with parameter set Θi

9 Apply action to robot
10 Store observation relevant for metrics
11 end
12 Evaluate c(Θi)
13 Update c̃(Θ)
14 end
15 Extract the best parameter set Θbest

Parameter boundaries type distribution manual
mbase [0, 1] float uniform 0.2
kgeo,col [0.01, 1] float log 0.03
kgeo,limit [0.01, 1] float log 0.3
kgeo,self [0.01, 1] float log 0.03
kfin,col [0.01, 1] float log 0.03
kfin,limit [0.01, 1] float log 0.05
kfin,self [0.01, 1] float log 0.03
βgeo,col [1, 5] int uniform 3
βgeo,limit [1, 5] int uniform 2
βgeo,self [1, 5] int uniform 3
βfin,col [1, 5] int uniform 3
βfin,limit [1, 5] int uniform 3
βfin,self [1, 5] int uniform 3
αβ [0, 1] float uniform 0.5
Bmin [0, 1] float uniform 0.01
Bmax [5, 20] float uniform 6.5
rshift [0.01, 0.1] float uniform 0.05
vex [1.0, 30] float uniform 15.0

TABLE I: Search space for parameters. Some parameters
are restricted to integers, and for some a log-distribution is
applied.

Optuna, a hyperparameter optimization framework initially
designed for machine learning applications [18]. The general
setup for one trial is shown in Fig. 1 and the procedure is
summarized in Algorithm 1.

VII. EXPERIMENTAL RESULTS

We showcase our parameter optimization method for sym-
bolic fabrics. The search space for the parameters is summa-
rized in Table I. We first analyze the importance of tuning
for optimization fabrics on the performance of trajectory gen-
eration. Then, we investigate how tuned parameters can be
transferred across different robots (Section VII-C), different
scenarios (Section VII-D), and between simulation and real
world (Section VII-E).

A. Experimental setup

The method was tested in simulation and in the real world
on a Panda robot and a mobile manipulator composed of a
Clearpath Boxer and a Panda robot. The simulation uses the
pybullet physics engine with an interface through OpenAI-
gym [25]. The different motion planning goals evaluated

(a) reaching-in-ring (b) reaching-on-table
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Fig. 4: Optimization history for simulation (left) and real
world (right) for panda robot in reaching-in-ring scenario.

in this paper are: (a) reaching an end-effector pose inside
a ring of obstacles (Fig. 3a) (similar to the experiment in
[3]) and (b) reaching an end-effector pose above a surface
with random obstacles (Fig. 3b). The two scenarios will be
referred to as reaching-in-ring and reaching-on-table, see
Section VII-A. Unless stated otherwise, the weights are set
to wpath = 0.1, wclearance = 0.2, wdistance = 0.7. We also use
this weighted sum as the performance metric. While these
weights are chosen arbitrarily in this work to demonstrate
the usefulness of autotuning, they should be derived from
a human evaluator in a more realistic scenario. We refer
with manual to an expert-tuning, see Table I for specific
parameters. During testing, the trial was randomized with
changing obstacles and goals. For autotuning on the robotic
arms, we consistently used N = 60 trials, although the best
parameter set is usually reached earlier, see Fig. 4.

B. Importance of tuning

We compare the autotuned parameters with seven random
parameter sets from the search space and a manually tuned
parameter set that we obtained through expertise in previous
works like [5]. In this experiment, tuning and testing are
performed on the test scenario reaching-in-ring. Tuning is
crucial for optimization fabrics, as the performance with a
random parameter set cannot compete with tuning, Fig. 5.
This result was expected and should only demonstrate that
the right parameter set is required to deploy this method.
Autotuned parameters reach a similar performance to the
expert. This result highlights the importance of tuning for
optimization fabrics and shows that autotuning is an effective
way to obtain parameter sets for novice users of optimization
fabrics.



 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Autotuned

Random
tuning

Expert

objective

Fig. 5: Evaluation for scenario reaching-in-ring autotuned
parameters and compared to random parameter selection
and manual tuning. Autotuning is able to systematically
outperform random parameter sets and reach expert level
tuning.
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Fig. 6: The autotuned for the panda robot in simulation for
the reaching-in-ring scenario on modified scenarios (blue)
is compared to autotuned parameter sets obtained on these
scenarios directly (green). Exchanging the robot (ur5, iiwa)
and changing the scenario (reaching-on-table) results in a
very small loss in performance, while the loss is higher when
parameters are transferred between simulation and real world
(real-world).

C. Cross validation: Transfer across robots

Without any retuning, we deploy the symbolic optimization
fabrics planner tuned on the Panda robot on two other robots
with similar specifications (Kuka LBR IIwa 7, Universal
Robot UR5) and compare the performance with tuning
performed on the respective robot. Specifically, we do
not change the leaf geometries and energies but change
differential maps according to relevant collision links on the
robot at hand. From Fig. 6, we conclude that tuning is
independent of the robot. This can be explained by the fact,
that optimization fabrics are a purely geometric approach
to trajectory generation and the different dimension of the
robots do not change the dynamical system enforced onto
the robot.

D. Cross Validation: Transfer across scenarios

In the third experiment, we evaluate how well an autotuned
parameter set transfers to a different scenario. In the specific
example, we use the tuning obtained from the reaching-
in-ring case and test it on reaching-on-table. Performance
can be transferred smoothly if the objective remains the
same, see Fig. 6. However, note that different scenario
might require generally slower motion because of a more
crowded environment. Such a step would require to retune
the parameters according to the new objective.

Fig. 7: Trajectory generation with optimization fabrics for
mobile manipulator using visual serving for product picking.

E. Cross Validation: Transfer real world

As optimization fabrics are a geometric method [3], they
should be independent of the robot embodiment. Relying on
the low-level controller. In this paper, we investigate how the
performance is affected by the transfer from the simulation
environment to the real world. Performance benefits from
tuning in the real world highlight that low-level controller
differences affect the behavior, see Fig. 6. Specifically, the
accumulated distance to the goal is increased (0.14m tuned
in the real world vs 0.16m tuned in simulation) when tuning
is transferred between simulation and real world. Thus, there
is added value in tuning in the real world. Our framework
offers to quickly tune fabrics in the real-world using the
fabrics-ros-bridge. With relaxed performance requirements,
it is sufficient to tune in simulation.

F. Cross Validation: Transfer mobile manipulator

Finally, we qualitatively test the performance of the tuning
method on a real mobile manipulator with 10 degrees of
freedom. After only N = 30 trials, the robot was able to per-
form coupled mobile manipulation based on a visual servoing
approach [26]. Symbolic optimization fabrics are especially
suited for visual servoing as their symbolic character allows
them to constantly update the position of the goal. A video
of this experiment is attached to the paper.

VIII. CONCLUSION

We formulated parameter tuning for trajectory generation
as a constrained optimization problem. Additionally, we
introduced symbolic optimization fabrics that implement
optimization fabrics in a parameterized way, for which the
general structure is pre-solved. The trajectory generator ob-
tained with this technique is parameterized and achieves low
computational costs at runtime. We showed that parameter
tuning for symbolic optimization fabrics can be effectively
solved using Bayesian optimization. Additionally, we have
shown that the tuning generalized across different robots,
tasks, and between simulation and the real world. Finally,
we qualitatively demonstrated that the method applies to
mobile manipulators. While we aim at developing a method-
agnostic autotuning framework for motion generation, sym-
bolic optimization fabrics were selected as an example in
this work.
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